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Abstract: This note is concerned with the oscillation of third order non-liner delay differential

equation of the form

LOEEY Q)] + p)y @)+ a0 (o) =0 (¥

In the papers (A. Tiryaki. M.F Aktas oscillation criteria of a certain class of third order non-
liner delay differential equation with damping J .Math Appl 325(2007) 54-68) and (M.f Aktas A.
Tiryaki. A. Zafer oscillation criteria for third order non-linear functional differential equation
Applied Math. Letter 23 (2010) 756-762)

The Authors established some Sufficient conditions Which insure that any solution of equation
(*) oscillator or converges to Zero. provided that the second order equation

(r2 (t)z’(t))/ +(p(t)/r(t))z(t)=0 (%)

is non oscillatory. Here we shall improve and unify the result given in the above mentioned
papers and present some new sufficient conditions which insure that any solution of equation (*)

oscillates equation (* *) is non oscillatory we also establish result for the oscillation of equation
(*) when equation () is oscillatory.

Keywords: oscillation, third order delay differential equation.

1. INTRODUCTION

In this chapter, we consider a nonlinear third order functional differential equations of the form

!

(nOEOYE) ) + pl)y©)+at)f (Ye)-0 o
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Where p,q,r, € C(I,R), r, e C*(1,R), | =[t,,0)c R, t, >0, r,(t)>0, r,(t). >0, p(t)>0,

q(t)>0, g eC*(1,R) satisfies 0<g(t)<t, g*(t)>0 and g(t)—> o as t—>o and f e C(R)

satisfies M > K > 0 for some constant k andu # 0.
u

A function y(t) is called a solution of equation (1) if y(t)eClt,,%) r,(t)y'(t)eC'|t, ) and

r,(tXr{t)y'lt) Cz[ty,oo)and y(t) satisfies equation (1) onlt, o Jfor everyt>t, >t,.
We restrict our attention to those solutions of equation (1) which exist on | and satisfy the
condition sup {y(t) :t, <t <o} > 0. Such a solution is called oscillatory if it has arbitrarily large

number of zeros, otherwise it is called non oscillatory. Equation (1) is said to be oscillatory if all

its solutions are oscillatory.

Determining oscillation criteria for particular second order differential equations has received a
great deal of attention in the last few years. Compared to second order differential equations, the
study of oscillation and asymptotic behavior of third order differential equations has received

considerably less attention in the literature. In the ordinary case for some€Cent results on third

order equation the reader can refer to Cecchi and Marini [3,4] Parhi and Das[10,11], Parhi and
Padhi[12], Skerlik [13] Tiryaki and Yaman [14] Aktas and Tiryaki [1] It is interesting to note

that there are third order delay differential equations which have only oscillatory solution or

have both oscillatory and non oscillatory solution. For example, y"(t)+ 2y'(t)+ y(t — z/2)=0
admits an oscillatory solution y, (t)=sin t and a non oscillatory solution y,(t)=e"*,where 1< 0
is a root of the characteristic equation

A +24+e7? =0,
On the other hand, all solutions of
y"'(t)+y(t—-7)=0, >0,
are oscillatory if and only if ze > 3. But the corresponding ordinary differential equation
y"(t)+y(t)=0,

admits a non oscillatory solution yl(t): e and oscillatory solutions
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y,(t)=e"sin (?t} and y, (t) = e? cos(%t} :

In the literature there are some papers and books, for example Agarwal et al. [2] Grace and Lalli
[5], Parhi and Das [10,11],Parhi and Padhi[12] Skerlik[L3], and Tiryaki and Yaman [14],which
deal with the oscillatory and asymptotic behaviour of solutions of functional differential
equations. In[L15], the authors used a generalized Riccati transformation and an integral
averaging technique for establishing some sufficient conditions which insure that any solution of

equation (1) oscillates or converges to zero. The purpose of our study is to improve and unify
the results in [1,15] and present some new sufficient conditions which insure that any solution of

equation (1) converges to zero, when the equation

Is non oscillatory.

We also apply our results to the equations of the form
a;(t)y"'(t)+a, (t)y"(t)+ a, (t)y (1) + a"(©) f (x(g (1)) =0, (2)

Where a,(t),i=12,3andq"(t) are positive continuous functions on [t,,), g and f are as in

equation (1).
2 .MAIN RESULTS

For the sake of brevity, we define

!

Ly(®)=y(0), Lyt =rOLy0) i =12and Ly(t)=(Ly()

For t e[t,, ) So equation (1) can be written as

Ly(t)+ p(t)y(t)+a(t)f (y(g(t))=0.

Remark 2.1 If y is a solution of(1) then z=-Y is also a solution of the equation
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Lyz(t)+ p(t)z'(t) +at)t " (z(a(t)))=0,

where f"(z)=—f(-z)and zf "(z)>0 forz #0.Thus, concerning non oscillatory solutions of (1)

we can restrict our attention only to solutions which are positive for all large t.

Define the functions

¢ ds ¢ ds
Rtt)=[—~  and R (tt)=[ "~
t 4

r.(s)

Fort, <t, <t <oo.we assume that

R,(t,t,) > ast— oo, 3)
and
R,(t,t,) > ast > . (4)

In this section we state and prove the following lemmas which we will use in the proof of our

main results.

Lemma 2.2 Suppose that
(02 +( P et =0 ©)

is non-oscillatory. If y is a non-oscillatory solution of (1)on [t,,c0), t, >t, then there exists a

t, e[t,,o0)such that y(t)L, (y(t))>0or y(t)L, (y(t))<0for t>t,.

In the following two Lemmas, we consider the second order delay differential equation

(r, (£x'(t) =Q(t)x(h(t)) (6)

Wherer, (t) is as in equation (1),Q e C(I,%),andh e C*(1, ) such that h(t)<t, h'(t >0)for

t>t, and h(t)—>oo ast > oo.

Lemma 2.3 If
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t
lim sup I Q(s)R, (h(t),h(s))ds > 1, (7)
IR0

then all bounded solutions of equation (6) are oscillatory.

Proof. Let x(t) be a bounded non-oscillatory solution of equation (6) say,x(t)>0 and

x(h(t))>0for t >t for somet, >t,. Then there exists at, >t, such that

x(t)>0, x'(t)<0 and (r, (tx'(t)) =0fort>t,. (8)
Otherwise, x'(t)>0 for t>t, and so, there exists a constant ¢* >0 and a t, >t, such that
r,(t)x'(t)>c fort >t; .

Integrating this inequality from t; to tand using condition(4)we see that x(t)—>oo ast — oo,

which contradicts the fact that x(t) is bounded on[t, , o). Now for v>u>t, we have

=R, (v,u)—r, (v)x'(v)) ©)
For t>s>t,, setting u=h(s) and v=nh(t) in (9), we get
x(h(s))= R, (h(t), h(s)X=r, (h(t)x(h(t)) (10)

Integrating equation (6) from h(t)>t,tot, we have

=1, (hE)X'(h(t) = r, (Ox (1) -, (h(E)x'(h(t)) = jQ(S)X(h(S))dS- 11)
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Using (10)in (11),we have
=1, (h(®)X'(h(t))> [ j )Q(S)Rz (n(t), h(S))dS](— r, (h®)' (h(t)

1> ! QIR () s e 12)

We take the lim supas t—ooof both sides of inequality (12), we have a contradiction to
condition (7) and this completes the proof of the lemma.

Lemma 2.4 If

u

lim sup j (rzl(U)jQ(S)dSJdu >1, (13)

t—oo h(t)
then all bounded solutions of equation (6) are oscillatory.

Proof. Let x(t) be a bounded non oscillatory solution of equation(6), say x(t)>0 and
x(h(t))>0 for t>t, for somet, >t,. As in Lemma 2.3, we obtain (8) Integrating equation (6)

from uto t, we have

r, (O ()~ r, (Wx'(u)= [ Qls)x(h(s))ds

u

or

t

)= ) ek i)

u

Integrating this inequality from h(t)tot, we get

X(h(t)){j)((rz‘l(U))jQ(S)dSJdU}X(h(t))
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or

12th)((rz—«u))jQ@ds}m}

( u

The rest of the proof is similar to that of Lemma 2.3 and hence is omitted. This completes the

proof
Now, we are ready to establish main results of this chapter.

Theorem 2.5 Let conditions (3)and (4) hold and equation (5) is non oscillatory. If there exist
two functions o and heC'(l,R) such that g(t)<h(t)<t,h’(t)>0 and p(t)>0 for t>t, such
that

lim sup

t—o0

tj; Ko(s)a(s)— r(g(s)lo'(s)r( )—PES)p SR

for all large t and condition (7) or (13) holds with
Q(t)=[Ka(t)R, (h(t). g(t) - (p(t)/r, )]z 0fort >t,,
Then equation (1) is oscillatory.

Proof. Let y(t) be a non oscillatory solution of (1) on [t;,), t>t,.Without loss of generality,

we may assume that y(t)>0 and y(g(t))>0 for t>t, for somet, >t,.

It follows from Lemma 2.2 that L y(t)<0 orL,y(t)>0 for t >t,.1fL,y(t)>0fort>t,, then one

can easily see that L,y(t)>0 fort>t,. Otherwise, L,y(t)<O for t>t,so there exists a

constant ¢ <0 and a t, >t,such that

L y(t)<—~fort>t,.

AV

Integrating this inequality from t;to t and using condition(4) we see that L, y(t)——c as

t — o0. Thus there exists a constant ¢~ <0 and a t,” >t, such that
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y'(t)< =~ fort>t".

Integrating this inequality from t; to t and using condition (3) we find that y(t)— —o as

t — oo, which contradicts the fact that y(t)>0 for t >t,

Next, we define

w(t)= plt) 220 forest,

First we claim that

Ly(t)= L y(g(t)= R, (9(t) t, L, (v(9(t)= R (9(t) )L, (y(t)) fort >t,  (15)
To this end we have,
g(t)

Ly(e0)= [ (Ly(s) Jos= | %) L,y(s)ds > L,y(g(t)R, (g(t),)

5] 4

Since L,y(t)<0,we getL,y(g(t))>L,y(t)
This completes the proof of the claim.

By(1)and (15), we have

j‘ Kp(s)a(s)— r(g(s)Ne'(s)n(s)- Pis)p S)Rzz(g(s), t))’ ds <w(t,) - wit) < w(t,)

4 4P(S)R2 (g S), 1)9' S)rl (S)
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which contradicts condition(4)Next, we let L y(t)<0 for t>t, and consider the function
L,y(t) The case L,y(t)<0 cannot hold for all larget, sayt >t, >t,, since by integration of

inequality

we obtain from (3) y(t)<0 for all large t,a contradiction.

Let y(t)>0, Liy(t)<Oand L,y(t)>0 for all large t, say t>t, >t,.Now, for v>u>t,, we

have

[ o= R ke L)

Setting u = g(t)andv = h(t), we get
y(9(t)= R, (h(t). g())- L y(h(t))= R, (h(t), g())x(n(t)) for t>t,

Where x(t)=-L,y(t)>0 for t>t,. From equation (1) and the fact that x is decreasing and

g(t)<h(t)<t we obtain

or

(X' @) > (Ka(E)R (h(t), 9 (1)~ (P O)X(n(1)) for t>t,.

Proceeding exactly as in the proof Lemma 2.3 and Lemma 2.4, we obtain the desired

conclusion completing the proof of the theorem.

Remark 2.6 From the proof of Theorem 2.5 we obtain.

(gWXP(L. L))

e (aPL,
M= AR LR o0 e O
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where p(t,t,)=p’ (t)r,(t)- o(t)pt)R,(g(t).t,) Now, if P(t,t,)>0fort >t,,
we have
Pt )= P(t,t,)fort > t,,

and hence

lim sup

t—o0

| Keloe) e e o

for all large t.

Next, if the function P(t,t,)<0fort>t,. We see that condition (14) can be replaced by

[ pls)alss =cs,

for all larget.

Finally, If p'(t)<Ofort>t,, we see from (16) that

R,(g(t)t,)

w/(t) < -Kplt)a(t)+ p(t)zrlT’

and so, condition (14) can be replaced by

i sup jf{Kp(s)q(s)— p(s)m}ds -,

t—oo

for all larget. The details are left.

The following examples are illustrative.
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Example 2.7 Consider the equation
y(t)+ ey )+ - e‘)y(t _57”] o 17)

It is easy to check that all conditions of Theorem 2.5 are satisfied for
h(t)=t—27, K =1and p(t)=1and hence equation (17) is oscillatory.
One Such solution is y(t)=sin t.

Example 2.8 Consider the equation
)+ ey 1)+ (e -1+ y*(t-1)-0. 18)

Here we take K =1, p(t)=1and h(t)=t—1/2.Now, it is easy to check that all hypotheses of
Theorem 2.5 are fulfilled except conditions (7)and (13).We note that equation (18) admits a

non-oscillatory solution y(t)=e™.

Next, we present the following comparison results.

Theorem 2.9 If in Theorem 2.5 condition (14) is replaced by the first order delay difference

equation

o)+ [% R, (G0 an{j%dsﬂmga»: 0 ()

and is oscillatory, then the conclusion of Theorem 2.5 holds.

Proof. Let y(t)be a non-oscillatory solution of (1) onlt,, ), t >t,.Without loss of generality, we
may assume that y(t)>0 and y(g(t))>0 for t>t,for some t, >t,.lIt follows from Lemma 2.2
that L y(t)<OorL,y(t)>0for t>t,.1fL y(t)>0for t>t,,then one can easily see that L,y(t)>0
for t >t,.As in the proof of Theorem 2.5 we obtain (15).

Form(15), we have

UIJES Copyright Rover Publications Page 11
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r)y'(t)="Lyt)=R,(g(t) )L, (v(a(t))fort >t,.

Dividing this inequality by r,(t) and integrating from t, to tone can easily find

Using (15) and (20) in equation (1) we have

t

w20 r o) e 7851 i <0

4

Where w(t) = L, y(t)> 0. This inequality has a positive solution and hence by Theorem 6.3 in[5],
equation (19) has a positive solution, which is a contradiction. The proof of the case when
L,y(t)<0 for t>t, is similar to that of Theorem 2.5 and hence is omitted. This completes the

proof.
The following result is immediate.

Corollary 2.10 If The Theorem 2.5 the condition (14) is replaced by

im in | pw )+ Ka(u [Ra(0(s)t) uxt
| Hoof g(t)[rl(u)RZ( Ka( {I r,(s) Hd e’

then the conclusion of Theorem 2.5 holds.

Next, if equation (3) is oscillatory, we give the following result.

Theorem 2.11 Let conditions(3)and (4)hold and equation (5) is oscillatory. If there exists a
functionh e C(R)such that g(t)<h(t)<t and h'(t)>0 for t>t, such that (7) or (13) holds
withQ(t)as in Theorem 2.5, then every solution Yy of equation (1)is either y(t) is oscillatory or

y'(t) is oscillatory.
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Proof. Let y(t) be a non oscillatory solution of (1) on [t,,), t >t,.Without loss of generality,
we may assume that y(t)>0 and y(g(t))>0fort>t,somet, >t,.Now, we consider the case

L,y(t)<0 or L y(t)>0fort >t,. If L y(t)>0fort>t, holds, then equation (1)becomes

(@OX©) + (PR <0fort >t, >t,,

where x(t)= L, y(t)>0.By[31] equation (5) has a positive solution, a contradiction. Proof of the
case when L y(t)<O0 for t>t, >t, is similar to that of Theorem2.5 and hence is omitted. This

completes the proof.

Example 2.12 Consider the equation

y"(t)+ % y’(t)+%y(t ~ 37”] =0. (22)

Let h(t):t — . It is easy to check that all hypotheses of Theorem2.9 are satisfied and hence
every solution y of equation (21) is oscillatory or y’ is oscillatory. One such solution is

y(t):sin t. We note that none of the results in [3,8,10,1L12,13,14,15] are applicable to equation

(21).

Finally, we can easily extend Theorems 2.5 and 2.9 to the equation

!’

(ROEOYO) ) + POy (hE)+dO)1 (eO)-0, (22)
where h e C(I,9R) such that g(t)< h(t)<tand h'(t)>0fort > t,.
Theorem 2.13 Let conditions (3)and (4) hold and the equation

(r, @) + () ((E))x(n(e) =0 23)
is oscillatory. If condition (7) or(13) holds with

Q(t)=[Ka(t)R, (h(t) o(t)) - (p(t)/r, (h(t))]= Ofort 2t,,

then every solution y of equation (22)is either y(t) is oscillatory or y'(t) is oscillatory.

UIJES Copyright Rover Publications Page 13
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Proof. Let y(t) be a non oscillatory solution of (22)onl[t,, o), t >t,. Without loss of generality,

we may assume that y(t)>0 and y(g(t))>O0for t>t, for somet, >t,.
As in the proof of Theorem 2.5, we obtain either L y(t)<0 orL,y(t)>0fort>t,.

If L y(t)>0for t >t holds, then equation (22) becomes
(R O ) + (PO (hW)x(W)<0fort 2, >t,,

Where x(t)= L, y(t)>0.By|[6]equation [4] has a positive solution, a contradiction. Proof of the
case when L,y(t)<Ofor t >t, >t, is similar to that of Theorem 2.5 and hence is omitted. This

completes the proof of the theorem.

We note that there are many criteria in the literature for the oscillation of second order dynamic

equations, and so by applying these results to equations(l)and (22), we can obtain many
oscillation results which are of similar types to these in [1.15] or else, of different types. The

formulations of such results are left.

The following examples are illustrative.

Example 2.14 Consider the equation
V) + y—7)+ 2y[t _37”) o (24)

It is easy to check that all hypotheses of Theorem 2.11 are satisfied with h(t):t — 27 and hence
every solution y of equation (24) either y(t) is oscillatory or y'(t) is oscillatory. One such
solution is y(t)=sin t.We note that none of the known results appeared in the literature are

applicable to this equation because of the delay that appeared in the damping term.

Example 2.15 Consider the equation (24) without delays, namely

y"'(t)+y'(t)+2y(t)=0 (25)

~is also non oscillatory.

Equation (25) has a non oscillatory solution y(t)=e™ and y'(t)=—e
Conditions which involved delays in Theorem 4.2.11 are not fulfilled. The solution set of

equation (25) is

UIJES Copyright Rover Publications Page 14
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{e™,e"? cos(ﬁ/Z), e"? sin (\/7/2)}.

We note that the presence of delays in equation (25) generate oscillation.

In order to apply results to equation (2). we can rewrite equation (2) in the form

[exp(jaz<s>/a3<s>ds]y~<t>J +exp[jaz(s)/a3<s>ds}<al<t>/a3<t»y'<t>

+exp(ja2<s>/a3<s)ds}(a2<t>/a3<t>>(q*<t)/a3<t>)f<y<g(t>>>=o

In this case, our results are applicable to equation (2)if we let

rl(t):l’

rz<t>=exp[ia2<s>/a3<s>dsj,

p<t>=exp[ja2 <s>/a3<s>dsj<a1<t>/a3<t»
and

q<t>=exp[ja2<s>/a3<s>ds]<al<t>/a3(t>>(q*<t>/a3<t>).

)

The formulation of the results as a special case of these obtained above are left.
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